Home > Microphones > Condenser and Tube Microphones >

Schoeps BLM3g Boundary-Layer Capsule


Schoeps BLM3g Boundary-Layer Capsule


 
List Price: $1,110.00
PAS DEAL $1,110.00
You'll earn 1110 points
.



Availability: Usually Ships in 1 to 2 Business Days

Product Code : BLM3G
QTY:

DESCRIPTION SPECIFICATIONS
 
BLM 3, Boundary-Layer, pressure transducer in 8" square plate, gray,Schoeps


Boundary-layer recording offers unobtrusive microphone placement possibilities; no stands or hanging fixtures are required.

When pressure transducers are used, the result is a hemispherical directional characteristic that is independent of frequency; thus it is not necessary to aim the microphones, and if the angle of sound pickup changes, the sound quality remains essentially the same.

In theory an ideal transducer of this type would have a membrane of infinitesimally small size, and would be mounted flush with an infinitely large, perfectly sound-reflecting surface. In practice, the plate in which the small transducer of the BLM 3g is mounted assures reflection of only the high and medium frequencies.
To reflect sound at lower frequencies (greater wavelengths), the dimensions of the surface must be correspondingly larger. So the microphone should be placed on a floor, wall or ceiling, or mounted on another surface large enough to reflect the lowest frequencies of interest.

Since the plate of the BLM 3g is only 5 mm thick and the transducer is not mounted at its center, the edges of the plate have very little effect upon the sound pickup. The BLM 3g does not interfere with the natural sound field; off-axis sounds thus encounter very little frequency discrimination. Sound coloration is low, even for moving sound sources, because the frequency response is essentially the same for all angles within the hemispherical pickup pattern.

Microphones used near sound-reflecting surfaces ordinarily produce comb-filter effects. This does not occur with the BLM 3g, since at the boundary in which the transducer is mounted there can be no phase difference between the direct sound and its reflection.
Ordinary pressure transducers show a difference in sensitivity between direct and diffuse sound at high frequencies. In a properly placed boundary-layer microphone, however, this difference occurs at all frequencies. The sound pressure for direct sound is doubled at an acoustic boundary (6 dB increase), while the essentially random phase relationships of reflections in the diffuse sound field cause the boundary-layer microphone's sensitivity to increase by only 3 dB. Thus a boundary-layer microphone will suppress diffuse sound somewhat, even though it is not directional. It will pick up less “room sound“ and the recording will be slightly “drier“ than it would be with an omnidirectional microphone.

The capsule itself is a classic electrostatic pressure transducer, which assures accurate reproduction of even the lowest frequencies along with the high signal-to-noise ratio and stable performance typical of professional condenser microphones.
This type of transducer is inherently insensitive to wind and vibration and the BLM 3g is comparatively heavy, so it picks up very little solid-borne noise. For example, when footsteps are recorded, most of the sound reaching the microphone will be conducted through the air rather than the floor.

  • microphone capsule (pressure transducer) designed for placement at an acoustic boundary layer
  • highly uniform hemispheric directional pattern independent of frequency
  • excellent reproduction of low frequencies
  • often preferred for orchestral recording





Share your knowledge of this product with other customers...Be the first to write a review

Browse for more products in the same category as this item:


Microphones > Condenser and Tube Microphones
Microphones > Boundary Microphones
Microphones > Schoeps Microphones
Microphones